from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("zed-industries/zeta") model = AutoModelForCausalLM.from_pretrained("zed-industries/zeta", torch_dtype=torch.bfloat16).to("cuda") alpaca_prompt = """### Instruction: You are a code completion assistant and your task is to analyze user edits and then rewrite an excerpt that the user provides, suggesting the appropriate edits within the excerpt, taking into account the cursor location. ### User Edits: User edited "models/customer.rb": ```diff @@ -2,5 +2,5 @@ class Customer def initialize - @name = name + @name = name.capitalize @email = email @phone = phone ``` ### User Excerpt: ```models/customer.rb def initialize <|editable_region_start|> @name = name.capitalize<|user_cursor_is_here|> @email = email @phone = phone @address = address end def to_s @name end <|editable_region_end|> private def validate_email @email.include?('@') ``` ### Response: """ inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])